If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+3=54p
We move all terms to the left:
7p^2+3-(54p)=0
a = 7; b = -54; c = +3;
Δ = b2-4ac
Δ = -542-4·7·3
Δ = 2832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2832}=\sqrt{16*177}=\sqrt{16}*\sqrt{177}=4\sqrt{177}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-4\sqrt{177}}{2*7}=\frac{54-4\sqrt{177}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+4\sqrt{177}}{2*7}=\frac{54+4\sqrt{177}}{14} $
| 2x•x=96 | | 60(x)=60(x+15)-2x(x+15) | | x^-5x=14 | | x+0.19x=1000 | | x^2-50x-625=0 | | 4x-5+22-5x=180 | | 3(-x)+2x+8=3x-2x+8 | | 3x+28=13x-32 | | 2x-5+4(-x)=5+3x | | 2x-6-6x=6 | | 8x(x^2+12)=0 | | 4x=2(-x)+10+2x+18 | | 6x(3x+5)=10 | | 2(x-3)-6x=6 | | l=9.8*2^2/4π^2 | | l=9.8*2^2/4π^2/4π^2 | | 5x+-2=3(-x)-10 | | 4x-1=14x-21 | | 9n=4n | | z/7+6=4 | | 2(5x-6)=30 | | 4z/10=8=-3 | | 4z.10+8=-10 | | 5t-10t²=0 | | x/8+7=-1 | | -10z-7=8 | | 7e+3=9=3e | | n-1/3=3/10 | | 4s+27=127 | | x2-6x+9=-5+9 | | 1.49x1.49= | | 2x/x-3+1/2x+3+3x+9/(x-3)(2x+3)=0 |